mRNA and microRNA transcriptomics analyses in a murine model of dystrophin loss and therapeutic restoration

نویسندگان

  • Thomas C. Roberts
  • K. Emelie M. Blomberg
  • C.I. Edvard Smith
  • Samir EL Andaloussi
  • Matthew J.A. Wood
چکیده

Duchenne muscular dystrophy (DMD) is a pediatric, X-linked, progressive muscle-wasting disorder caused by loss of function mutations affecting the gene encoding the dystrophin protein. While the primary genetic insult in DMD is well described, many details of the molecular and cellular pathologies that follow dystrophin loss are incompletely understood. To investigate gene expression in dystrophic muscle we have applied mRNA and microRNA (miRNA) microarray technology to the mdx mouse model of DMD. This study was designed to generate a complete description of gene expression changes associated with dystrophic pathology and the response to an experimental therapy which restores dystrophin protein function. These datasets have enabled (1) the determination of gene expression changes associated with dystrophic pathology, (2) identification of differentially expressed genes that are restored towards wild-type levels after therapeutic dystrophin rescue, (3) investigation of the correlation between mRNA and protein expression (determined by parallel mass spectrometry proteomics analysis), and (4) prediction of pathology associated miRNA-target interactions. Here we describe in detail how the data were generated including the basic analysis as contained in the manuscript published in Human Molecular Genetics with PMID 26385637. The data have been deposited in the Gene Expression Omnibus (GEO) with the accession number GSE64420.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-level omics analysis in a murine model of dystrophin loss and therapeutic restoration

Duchenne muscular dystrophy (DMD) is a classical monogenic disorder, a model disease for genomic studies and a priority candidate for regenerative medicine and gene therapy. Although the genetic cause of DMD is well known, the molecular pathogenesis of disease and the response to therapy are incompletely understood. Here, we describe analyses of protein, mRNA and microRNA expression in the tibi...

متن کامل

Restoration of dystrophin expression using the Sleeping Beauty transposon – PLOS Currents Muscular Dystrophy

The Sleeping beauty (SB) system is a non-viral DNA based vector that has been used to stably integrate therapeutic genes into disease models. Here we report the SB system is capable of stably integrating the ΔR4R23/CTΔ micro-dystrophin gene into a conditionally immortal dystrophin deficient muscle cell-line, H2K SF1, a murine cell model for Duchenne muscular dystrophy. Genetically corrected H2K...

متن کامل

MicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications

Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...

متن کامل

Restoration of dystrophin expression using the Sleeping Beauty transposon

The Sleeping beauty (SB) system is a non-viral DNA based vector that has been used to stably integrate therapeutic genes into disease models. Here we report the SB system is capable of stably integrating the ΔR4-R23/CTΔ micro-dystrophin gene into a conditionally immortal dystrophin deficient muscle cell-line, H2K SF1, a murine cell model for Duchenne muscular dystrophy. Genetically corrected H2...

متن کامل

P 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation

Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016